Topical Review on Cuticle Synthesis and Function The Formation and Function of Plant Cuticles

نویسنده

  • Trevor H. Yeats
چکیده

The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought molecular bases of alkane formation and polyester synthesis have allowed construction of nearly complete biosynthetic pathways for both waxes and cutin. Concurrently, a complex regulatory network controlling the synthesis of the cuticle is emerging. It has also become clear that the physiological role of the cuticle extends well beyond its primary function as a transpiration barrier, playing important roles in processes ranging from development to interaction with microbes. Here, we review recent progress in the biochemistry and molecular biology of cuticle synthesis and function and highlight some of the major questions that will drive future research in this field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The formation and function of plant cuticles.

The plant cuticle is an extracellular hydrophobic layer that covers the aerial epidermis of all land plants, providing protection against desiccation and external environmental stresses. The past decade has seen considerable progress in assembling models for the biosynthesis of its two major components, the polymer cutin and cuticular waxes. Most recently, two breakthroughs in the long-sought m...

متن کامل

Cutin synthesis: A slippery paradigm.

Despite its biological importance, the mechanism of construction of cutin, the polymer matrix of plant cuticles, has not yet been elucidated. Recently, progress on lipid barrier formation of polymers such as cutin and suberin has been recently reviewed by Pollard et al. In their review the authors state that the ubiquitous cutin is the least understood of the plant extracellular polymers and th...

متن کامل

Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid.

The expansion of aerial organs in plants is coupled with the synthesis and deposition of a hydrophobic cuticle, composed of cutin and waxes, which is critically important in limiting water loss. While the abiotic stress-related hormone abscisic acid (ABA) is known to up-regulate wax accumulation in response to drought, the hormonal regulation of cuticle biosynthesis during organ ontogeny is poo...

متن کامل

Modelling sugar diffusion across plant leaf cuticles: the effect of free water on substrate availability to phyllosphere bacteria.

We present a continuous model for the diffusion of sugars across intact plant leaf cuticles. It is based on the flow of sugars from a source, representing the leaf apoplast, to a sink, in the shape of a hemispherical drop of water on the outside of the cuticle. Flow is a function of the difference between sugar concentrations C(Source) and C(Sink) , permeability P of the cuticle, volume V(Sink)...

متن کامل

Infrared and Raman spectroscopic features of plant cuticles: a review

The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided signif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013